>您现在的位置:诗歌鉴赏 > 西方文学

《二次函数的应用》同步练习2(冀教版九年级下)

2019-07-12 20:17作者:admin

《二次函数的应用》同步练习2(冀教版九年级下)

第15讲二次函数的应用【回顾与思考】二次函数应用【例题经典】用二次函数解决最值问题例1(2006年旅顺口区)已知边长为4的正方形截去一个角后成为五边形ABCDE(如图),其中AF=2,BF=1.试在AB上求一点P,使矩形PNDM有最大面积.【评析】本题是一道代数几何综合题,把相似三角形与二次函数的知识有机的结合在一起,能很好考查学生的综合应用能力.同时,也给学生探索解题思路留下了思维空间.例2某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如下表:x(元)152030…y(件)252010…若日销售量y是销售价x的一次函数.(1)求出日销售量y(件)与销售价x(元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?此时每日销售利润是多少元?【解析】(1)设此一次函数表达式为y=kx+b.则解得k=-1,b=40,即一次函数表达式为y=-x+40.(2)设每件产品的销售价应定为x元,所获销售利润为w元w=(x-10)(40-x)=-x2+50x-400=-(x-25)2+225.产品的销售价应定为25元,此时每日获得最大销售利润为225元.【点评】解决最值问题应用题的思路与一般应用题类似,也有区别,主要有两点:(1)设未知数在“当某某为何值时,什么最大(或最小、最省)”的设问中,“某某”要设为自变量,“什么”要设为函数;(2)问的求解依靠配方法或最值公式,而不是解方程.【考点精练】1.二次函数y=x2+x-1,当x=______时,y有最_____值,这个值是________.2.在距离地面2m高的某处把一物体以初速度V0(m/s)竖直向上抛出,在不计空气阻力的情况下,其上升高度s(m)与抛出时间t(s)满足:S=V0t-gt2(其中g是常数,通常取10m/s2),若V0V2确定;雨天行驶时,这一公式为S=V2.如果车行驶的速度是60km/h,那么在雨天行驶和晴天行驶相比,刹车距离相差_________米.4.(2006年南京市)如图,在矩形ABCD中,AB=2AD,线段EF=10.在EF上取一点M,分别以EM、MF为一边作矩形EMNH、矩形MFGN,使矩形MFGN~矩形ABCD.令MN=x,当x为何值时,矩形EMNH的面积S有最大值?最大值是多少?。

随机推荐

图文聚集

热门排行

最新文章